
A Framework for Automatic Debugging

Mikhail Auguston, Clinton Jeffery, Scott Underwood
Department of Computer Science, New Mexico State University

{mikau, jeffery, sunderwo}@cs.nmsu.edu

Abstract

This paper presents an application framework in
which declarative specifications of debugging actions are
translated into execution monitors that can automatically
detect bugs. The approach is non-intrusive with respect to
program source code and provides a high level of
abstraction for debugging activities.

1. Motivation

Debugging is one of the most challenging, and least
developed areas of software engineering. Debugging
activities include queries regarding many aspects of target
program behavior: sequences of steps performed, histories
of variable values, function call hierarchies, checking of
pre- and post-conditions at specific points, and validating
other assertions about program execution. Performance
testing and debugging involves a variety of profiles and
time measurements.

We are building automatic debugging tools based on
precise program execution behavior models that enable us
to employ a systematic approach. Our program behavior
models are based on events and event traces [1][2][3].

Debugging automation refers to a computation over an
event trace. Program execution monitors are programs
that load and execute a target program, obtain events at
run-time, and perform computations over the event trace.
Computations are performed during execution, post-
mortem, or in any mixture of both times.

Any detectable action performed during a target
program's execution is an event. Expression evaluations,
statement executions, and procedure calls are all examples
of events. An event has a beginning, an end, and some
duration; it occupies a time interval during program
execution. This leads to the introduction of two basic
binary relations on events: partial ordering and inclusion.
Those relations are determined by target language syntax
and semantics, e.g. two statement execution events may
be ordered, or an expression evaluation event may occur
inside a statement execution event. The set of events
produced at the program run time, together with ordering
and inclusion relations, is called an event trace and
represents a model of program behavior. An event trace

forms an acyclic directed graph (DAG) with two types of
edges corresponding to the basic relations.

The language UFO (from Unicon-FORMAN)
integrates the experience accumulated in the FORMAN
[1] language and the Alamo monitoring architecture [4] to
provide a complete solution for development of automatic
debugging tools. UFO is an implementation of FORMAN
for debugging programs written in the Unicon and Icon
programming languages [5][6].

2. Unicon and Alamo

Unicon is an imperative, goal-directed, object-oriented
superset of Icon. Unicon's syntax is similar to Pascal or
Java; its semantics features built-in backtracking,
heterogeneous data structures and string scanning
facilities. Unicon extends Icon's reach with elegant object-
orientation, high level networking, messaging, and
database facilities.

The reference implementation of Unicon is a virtual
machine. Virtual machines (VMs) are attractive to
language implementers because they provide portability
and a vastly simpler implementation of very high level
language features such as backtracking. As a result, event
detection is an integral part of the VM.

VMs are ideal for developing debugging tools; they
provide an appropriate level of abstraction for behavior
models that describe program executions in a processor
independent manner, as illustrated by the JPAX tool [7].

In Alamo, monitors and the target program execute as
(sets of) coroutines with separate stacks and heaps inside
a common VM. The Unicon VM is instrumented with
over 100 kinds of atomic events, each one capable of
reporting a <code,value> pair to monitors with interest in
that event. Event reports are coroutine context switches.

Monitors are written independently from the target
program, and can be applied to any target program
without recompiling the monitor or target program.
Monitors dynamically load target programs, and can
easily query the state of arbitrary variables at each event
report. Multiple monitors can monitor a program
execution, under the direction of a monitor coordinator.

Alamo's goal was to reduce the difficulty of writing
execution monitors to be just as easy as writing other
types of application programs. UFO supports FORMAN's

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

more ambitious goal of reducing the task of writing
automatic debuggers to the task of specifying generic
assertions about program behavior.

3. An Event Grammar for Unicon

Event grammars provide a model of program run time
behavior. Monitors do not have to parse events using this
grammar, since event detection is part of VM and UFO
runtime system functionality. The following description
provides a "lightweight" semantics of the Unicon
programming language tailored for specification of
debugging activities.

An event corresponds to a specific action of interest
performed during program execution. Each event has one
or more types and related attributes associated with it.

Universal attributes are found in every event. They
are frequently used to narrow assertions down to a
particular domain (function, variable, value) of interest.
Some of the universal attributes are:

source_text: in canonical form (i.e. with redundant
spaces eliminated, etc.)

line_num, col_num: source text locations
time_at_end, time_at_begin, duration: timing

attributes
value_at_begin (Unicon-expression),
value_at_end (Unicon-expression): these attributes

provide access to the program states

The event types, and type-specific attributes they provide,
are summarized in the table below.

Event Type Description Attributes
prog_ex whole program execution
expr_eval expression evaluation value,

operator,
type,
failure_p

func_call function call name,
paramlist

param actual parameter evaluation name
func_body function body execution
input, output I/O file
variable variable reference
literal reference to a constant value
lhp lefthand part, assignment address
rhp righthand part, assignment
clause then-, else-, or case branch

execution
test test evaluation
iteration loop iteration
return return from procedure call

Event types form a class hierarchy, shown in Figure 1.
Subtypes inherit attributes from the parent type.

Figure 1. Event Type Inheritance Hierarchy

The UFO event grammar for Unicon is a set of axioms
describing the structure of event traces with respect to two
basic relations: inclusion and precedence. The grammar
shown below is one possible abstraction of Unicon
semantics; other event grammars might be used. The
event grammar limits what kinds of bugs can be detected,
so detail is useful. The grammar uses the notation:

Notation Meaning
A :: (B C) B precedes A, A includes B and C
A* Zero or more A’s under precedence
A+ One or more A’s under precedence
A | B Either A or B; alternative
A? A is optional
{ A , B } Set; A and B have no precedence

prog_ex:: (expr_eval *)
expr_eval::((expr_eval) | unary op

(expr_eval expr_eval) | binary op
(expr_eval+) |
(test clause) | conditional/

case expressions
(iteration *) | loops
({ lhp, rhp})) assignment

lhp and rhp are not
ordered, beginning of
lhp precedes rhp, and
end of lhp follows rhp

iteration:: (test expr_eval*) | (expr_eval* test) |

expr_eval

func_call

variable

param

literal
generator

clause
iteration

test

return
lhp

rhp

input

output

method
constructor

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

(expr_eval *)
func_call:: (param* func_body)
func_body:: (expr_eval* return?)

Execution of a Unicon program produces an event
trace organized by precedence and inclusion into a DAG.
The structure of the event trace (event types, precedence
and inclusion of events) is constrained by the event
grammar axioms above. The event trace models Unicon
program behavior and provides a basis to define
debugging activities (assertion checking, debugging
queries, profiles, debugging rules, behavior visualization)
as appropriate computations over the event traces.

4. FORMAN

Alamo allows efficient monitors to be constructed in
Unicon, but using a special-purpose language such as
FORMAN, with the rich behavior model described in the
preceding section, has compelling advantages. For
example, in FORMAN we may refer to target program
variable x, while in the Unicon monitor it is referenced as
variable("x", &eventsource).

More important than such notational conveniences are
FORMAN's control structures that support computations
over event traces, centered around the notions of event
pattern and aggregate operations over events.

The simplest event pattern comprises just an event type
and matches successfully an event of this type or an event
of a subtype of this type. Event patterns may include
event attributes and other event patterns to specify the
context of an event under consideration. For example, the
event pattern

E: expr_eval:: (R: rhp & is_an_object(R.value))
& E.operator == ":="

matches an event of assignment type where the right hand
part evaluates to an object. Temporary variables E and R
provide an access to the events under consideration within
the pattern.

The following example demonstrates the use of an
aggregate operation.

CARD[A: func_call &
A.func_name == "read" FROM prog_ex]

yields a number of events satisfying given event pattern,
collected from the whole execution history. Expression
[…] is a list constructor and CARD is an abbreviation for
a reduction of '+' operation over the more general list
constructor:

+/[A: func_call & A.func_name == "read"
FROM prog_ex APPLY 1]

Quantifiers are introduced as abbreviations for
reductions of Boolean operations OR and AND. For
instance,

FOREACH Pattern FROM event_set Boolean_expr

is an abbreviation for
AND/[Pattern FROM event_set APPLY Boolean_expr]

Debugging rules in FORMAN usually have the form:
Quantified_expr SAY-clauses ONFAIL SAY-clauses

The Quantified-expr is optional and defaults to TRUE.
The execution of FORMAN programs relies on the
Unicon monitors embedded in a virtual machine
environment.

5. Examples of Debugging Rules

UFO supports and improves upon the most common
application-specific debugging techniques. For example,
UFO supports traditional precondition checking, or print
statement insertion, without any modification of the target
program source code. This is useful when the
precondition check or print statement is needed in many
locations scattered throughout the code.

Example #1: Tracing. Probably the most common
debugging method is to insert output statements to
generate trace files. It is possible to request evaluation of
arbitrary Unicon expressions at the beginning or at the
end of events.
DO AT EVERY A: func_call &

A.func_name == “my_func”
FROM prog_ex {

BEFORE A
{ write(“entering my_func, value of X is:”, X) }

AFTER A
{ write(“leaving my_func, value of X is:”, X) }

}
This debugging rule causes run time instrumentation

with calls to write() at selected points, before and after
each occurrence of event A.

Example #2: Profiling. A myriad of tools are based on a
premise of accumulating the number of times a behavior
occurs, or the amount of time spent in a particular activity
or section of code. The following debugging rule
comprises several computations over the event trace.

SAY("Total number of read() statements: "
CARD[r:input & r.filename == "xx.in"

FROM prog_ex]
"Elapsed time for read operations is: "
+/ [r:input & r.filename=="xx.in"

FROM prog_ex APPLY r.duration]

Another interesting prospect is the development of a
suite of generic automated debugging tools that can be
used on any Unicon program. UFO provides a level of
abstraction sufficient for specifying typical bugs and
debugging rules. So far, the automatic debugging

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

encyclopedia at http://www.cs.nmsu.edu/please/bugs.html
has entries for 53 common bugs.

Example #3: Detecting Use of Un-initialized Variables.
Reading an un-initialized variable is allowed in Unicon,
but often leads to errors. Therefore, in this debugging rule
all variables within the target program are checked to
ensure that they are initialized before they are used.

FOREACH E: expr_eval CONTAINS (V: variable)
FROM prog_ex

EXISTS D: lhp FROM E.prev_path
D.source_text == V.source_text AND

V.source_text BELONGS_TO
(E.scope SCOPE_INTERSECTION D.scope)

ONFAIL SAY("Expression" E " contains the "
" uninitialized variable " V.source_text)

SCOPE_INTERSECTION is similar to a set intersection,
except that it takes into account scoping and visibility
rules of the source language.

Example #4: Closed Files. Failure to close files that have
been opened is an easily overlooked error. This assertion
detects this event and warns the user. The temporary
variable NumberOfClose holds the cardinality of the
close() event set.

FOREACH a: func_call::(b:param) &
a.func_name == "open"

LET NumberOfClose =
CARD[c:func_call::(d:param) &

c.func_name == "close" &
b.source_text == d.source_text]

IN IF NumberOfClose == 0 THEN
SAY("Failed to close file" b.source_text

"after opening at event " ,a)
ELSEIF NumberOfClose > 1 THEN

SAY("Attempt to close file " b.source_text
"more than once") ENDIF

6. Implementation Issues

This section describes issues that have arisen during
the implementation of UFO. The most important of these
issues is the translation model by which FORMAN
assertions are compiled down to Unicon Alamo monitors.
Debugging activities are written as if they have the
complete post-mortem event trace, the DAG with events,
precedence and containment relations, available for
processing. This generality is extremely powerful;
however the vast majority of assertions can be compiled
down into monitors that execute entirely at runtime.
Runtime monitoring saves enormously on memory and

I/O requirements and is the key to practical
implementation. For those assertions that require post-
mortem analysis, the UFO runtime system will compute a
projection of the execution DAG necessary to perform the
analysis.

The first step in generating code under the UFO
translation model is to categorize each assertion as either
"runtime", "post-mortem", or "hybrid", denoting the
extent to which that assertion can be performed at
runtime. Runtime and hybrid categorization is determined
by constraints on FORMAN quantifier prefixes and
results in more efficient monitor code. Nested quantifiers
generally require post-mortem operation.

The UFO compiler generates Alamo Unicon monitors
from FORMAN rules. Each FORMAN statement is
translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as
coroutines with the Unicon target program.

Implementation of Example #1: Tracing. A single
DO AT EVERY quantifier is quite typical of many UFO
debugging actions and allows computation to be
performed entirely at runtime. The events being counted
and values being accumulated are used to construct an
event mask in the initialization code that defines the
Alamo events that will be monitored.

The monitor’s event processing loop implements the
filter based on procedure name within an if-expression.
The Unicon code blocks containing write() expressions
are inserted directly into the event loop for the relevant
events. The complete monitor is:

$include "evdefs.icn"
link evinit
procedure main(av)

EvInit(av) | stop("can't monitor ", av[1])

initialization for BEFORE and AFTER func_call
mask:= E_Pcall ++ E_Pret ++ E_Pfail

while EvGet(mask) do {
if &eventcode == E_Pcall &

image(&eventvalue)==“procedure my_func” then
inserted BEFORE clause
write(“entering my_func, value of X is:”,

variable(“X”, Monitored))
if &eventcode == (E_Pret | E_Pfail) &

image(&eventvalue)==”procedure my_func” then
inserted AFTER clause
write(“leaving my_func, value of X is:”,

variable(“X”, Monitored))
}

end

Implementation of Example #2: Profiler. This is
another typical situation, which involves an aggregate

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

operation and selection of events according to a given
pattern. The SAY expression is implemented by a call to
write(); it must be performed post-mortem since it uses
parameters whose values are constructed during the entire
program execution. CARD denotes a counter, while SUM
denotes an accumulator +/; both require a variable that is
initialized to zero. The event subtypes and constraints are
used to generate additional conditional code in the body
of the event processing loop. Lastly, some attributes such
as r.duration require additional events and measurements
besides the initial triggering event. In the case of
r.duration, a time measurement between the function call
and its return is needed.

$include "evdefs.icn"
link evinit
procedure main(av)

EvInit(av) | stop("can't monitor ", av[1])
initialization for CARD and SUM
cardreads := 0
sumreadtime := 0
mask := E_Fcall
while EvGet(mask) do {

count CARD of r:input...
if &eventcode == E_Fcall &

&eventvalue === (read|reads) then
cardreads +:= 1

add SUM of r.duration for r:input
if &eventcode == E_Fcall &

&eventvalue === (read|reads) then {
thiscall := &time
EvGet(E_Ffail++E_Fret)
sumreadtime +:= &time - thiscall

}
}

Translation of SAY
write("Total number of read() statements: ",

cardreads, "\n",
"Elapsed time for read operations is: ",
sumreadtime)

end

The advantage of the UFO approach is the
combination of an optimizing compiler for monitoring
code with efficient run-time event detection and reporting.
Since we know at compile time all necessary event types
and attributes required for a given FORMAN program,
the generated Unicon monitor can be very selective about
the behavior that it observes. The compiler merges several
computations such as operation reduction or quantifiers
present in the FORMAN assertions into a single Unicon
event loop. Since the compiler processes several
assertions together, it can merge overlapping constructs
(for example, those referring to the same events).

For certain kinds of FORMAN constructs, such as
nested quantifiers, the monitor must accumulate a sizable

projection of the complete event trace and postpone
corresponding computations until all required information
is available, and schedule corresponding computations.
The most challenging and interesting remaining part of
this compilation effort is to further optimize this analysis.

UFO’s goal of practical application to real-sized
programs has motivated improvements to the Alamo
instrumentation of the Unicon VM. Although UFO is not
complete enough to report conclusive results, the
following table illustrates the effects of certain
optimizations. The program in question is a mail message
indexing tool, which processes mail headers and builds
indices. For test purposes it is executed on a sample input
of 3MB. All results are in seconds. The leftmost column
shows the application’s normal runtime. Columns 2-5
show runtimes for Implementation Example #2 above (the
I/O function profiler) under Alamo, and three levels of
optimization under UFO. Alamo imposed a 200%
slowdown for comprehensive VM instrumentation, plus
less than 100% slowdown for monitor code. Very little of
the VM instrumentation is actually needed for this
example. UFO-IO shows the effect of instrumentation
optimization which UFO does at compile-time, optionally
generating a custom VM for a given suite of FORMAN
assertions. UFO-CO shows additional compiler
optimizations on the monitor code. UFO-VM shows the
effect of a runtime optimization called value masking on
the virtual machine instrumentation. We are working on
additional optimizations, and believe the end result will
be highly practical execution from our high-level
framework.

No monitor Alamo UFO-IO UFO-CO UFO-VM
1.35 3.64 2.82 2.30 1.87

7. Related Work

See www.cs.nmsu.edu/TechReports/2002/004.pdf for
an expansion of this survey of related work.

The Event Based Behavioral Abstraction (EBBA) [8]
characterizes program behavior in terms of primitive and
composite events. Dalek is an event-based debugger for C
built on top of GDB [9].

FORMAN takes a more comprehensive modeling
approach than EBBA or Dalek, based on an event
grammar and a language for expressing computations
over execution histories. Event grammars make
FORMAN suitable for automatic source code
instrumentation. FORMAN’s abstraction of event as a
time interval provides an appropriate level of granularity
for reasoning about behavior, in contrast with the event

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

notion in previous approaches where events are
considered point-wise time moments.

Monitoring frameworks such as Dalek and COCA [10]
use GDB to attain a necessary level of abstraction, which
UFO finds in the Unicon virtual machine. While both
approaches yield adequate source-level access and control
over the monitored program, the virtual machine approach
avoids substantial operating system overhead and offers
better performance and scalability to larger programs.

Assertion languages provide yet another approach to
debugging automation. Most approaches are based on
Boolean expressions attached to points in the target
program, like the assert() macro in C. References
[11,12,13] give approaches to programming with
assertions for C and Ada. Even local assertions associated
with particular points within the program may be
extremely useful for program debugging. The DUEL [14]
debugging language introduces expressions for C
aggregate data exploration, for both assertions and
queries.

The notion of computation over execution trace
introduced in FORMAN is a generalization of
Algorithmic Debugging [15, 16] and may be a convenient
basis for describing generic debugging strategies.

PMMS [17] receives queries about target programs
written in AP5, instruments source code, and stores data
in a database to answer the posed questions. PMMS’s
domain specific query language is similar to FORMAN
but tailored for database-style query processing.

8. Conclusions

The popularity of virtual machines promises to enable
dramatic improvements in automatic debugging. These
improvements will only occur if debugging is a specific
goal of the virtual machine, e.g. as in the case of .net [18].

UFO illustrates what is possible for a broad class of
languages such as those supported by the Java VM or the
.net VM. Our approach uniformly represents many types
of debugging-related activities as computations over
traces. We have shown an approach to integrating event
trace computations into a monitoring architecture based
on a virtual machine. The end result provides a suitable
environment for the implementation of automated
debugging tools.

Acknowledgements

This work has been supported in part by U.S. Office of
Naval Research Grant # N00014-01-1-0746, by U.S. Army
Research Office Grant # 40473--MA-SP, and by the National
Library of Medicine.

References

[1] Mikhail Auguston, Program Behavior Model Based on
Event Grammar and its Application for Debugging
Automation, in Proceedings of AADEBUG'95, Saint-
Malo, France, May 22-24, 1995, pp. 277-291.

[2] M. Auguston, A. Gates, M. Lujan, "Defining a program
Behavior Model for Dynamic Analyzers", in Proceedings
of SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

[3] M. Auguston, “Lightweight semantics models for program
testing and debugging automation”, in Proceedings of the
7th Monterey Workshop on "Modeling Software System
Structures in a Fast Moving Scenario", Santa Margherita
Ligure, Italy, June 13-16, 2000, pp. 23-31.

[4] Clinton L. Jeffery, Program Monitoring and Visualization:
an Exploratory Approach. Springer, New York, 1999.

[5] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and
Robert Parlett, "Programming with Unicon",
http://unicon.sourceforge.net.

[6] Ralph E. Griswold and Madge T. Griswold, The Icon
Programming Language, 3rd edition. Peer to Peer
Communications, San Jose, 1997.

[7] K. Havelund, S. Johnson, and G. Rosu. “Specification and
Error Pattern Based Program Monitoring”, European
Space Agency Workshop on On-Board Autonomy,
Noordwijk, Holland, October 2001.

[8] P. C. Bates, J. C. Wileden, "High-Level Debugging of
Distributed Systems: the Behavioral Abstraction Ap-
proach", Journal of Systems & Software 3, 1983, pp. 255-
264.

[9] R. Olsson, R. Crawford, W. Wilson, "A Dataflow
Approach to Event-based Debugging", Software --
Practice & Experience, v.21(2), February 1991, pp. 19-31.

[10] M. Ducasse, "COCA: An automated debugger for C", in
Proceedings of ICSE 99, Los Angeles, 1999, pp.504-513.

[11] D. Rosenblum, "A Practical Approach to Programming
with Assertions", IEEE Transactions on Software
Engineering, Vol. 21, No 1, January 1995, pp. 19-31.

[12] D. C. Luckham, S. Sankar, S. Takahashi, "Two-
Dimensional Pinpointing: Debugging with Formal
Specifications", IEEE Software, January 1991, pp.74-84.

[13] D. C. Luckham, D. Bryan, W. Mann, S. Meldal, D. P.
Helmbold, "An Introduction to Task Sequencing
Language, TSL version 1.5" (Preliminary version),
Stanford University, February 1, 1990, pp. 1-68.

[14] M. Golan, D. Hanson, "DUEL - A Very High-Level
Debugging Language", in Proceedings of the Winter
USENIX Technical Conference, San Diego, Jan. 1993.

[15] E. Shapiro, "Algorithmic Program Debugging", MIT
Press, May 1982.

[16] P. Fritzson, N. Shahmehri, M. Kamkar, T. Gyimothy,
"Generalized Algorithmic Debugging and Testing", ACM
LOPLAS Vol. 1, No. 4, December 1992.

[17] Y. Liao, D. Cohen, "A Specificational Approach to High
Level Program Monitoring and Measuring", IEEE
Transactions On Software Engineering, Vol. 18, No. 11,
November 1992, 969 – 978.

[18] http://www.microsoft.com/net/.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

